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• ABSTRACT

For each ~ ~ T := ~~n-l 
: a < t < • . .  < t < b}, let It (x)— — 1 n—i t

be the Lebesgue function of the process of polynomial interpolation on
8

[a,b] by polynomials of degree c n at the points

a =: t < t < ... < t < t := b. Let A . ( t) := max A (x),
0 1 n—i n t

t. <x<t . —

• i 1 i• I = l,...,n. Based on work of Kilgore [81, we prove the following conjectures.

(a) Bernstein: jJA is minimal when A (t) = .• .  = A ( t ) .
1 —  n —

(b) Erd6s: If A . (t) A , i = l,...,n, then for all se T\{t}

mm A .(s) < A < max A (s)
1~~~ 1—

1 1

Analogous results are proven for trigonometric interpolation .

These results are of interest since I IA~ gives the norm of the

linear map of polynomial interpolation on the continuous functions and

• therefore bounds the effec t of noisy data on their polynomial interpolant

and shows how close the interpolation error is to the best possible error

by any method .

AMS (MOS) Subject Classif ications : 41A05, 42Al 2

Key Words: polynomial interpolation, optimal nodes , Lebesgue function,
minimal projector .
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PROOF OF THE CONJECTURES OF BERNSTEIN AND ERDOS CONCE RNING THE

OPTIMAL NODES FOR POLYNOMIAL INTERPOLATiON

Carl de Boor and Allan Pjnkus

~~~~~~~~~~ It is the purpose of this noto to complete and extend work of Kilgorc (8 1

on the optimal nodes in polynomial interpolation.

The problem is as follows. Consider the Banach space C(a,bJ of cont inuous  funct ions

on the f i n i t e  interval ta ,b) , with the usual norm

4 If II :~~ max !f(x) I
a<x~b

Throughout the paper , we take n to be a f i x e d  integer ,

-
‘ 

• 

n > 2 .

Corresr onding to each poifl t~ t in

T : ( : a < t
1 ~ . . c t

1 
< h }

we ci astruct the linear ma; P~ of polynom ia l  i n t e rp o l a t i o n  i n Cfa,h ] at the n 4 1

poiIite or nodes a t0
,t

1 t b. In i ts  Lacirang e form ,

P f  : 

~~~~

wit h

• x .- t •
2~ (x) -ri 

~~~~~~~~~~ 
i C 1O ,nl

1 
~~~~ ~ j

The problem is one of de termining  ~~~~ima ]  nodes , i .e . , a point  or po in t s  t~ c T for whic~

II~ ~II inf
tC T —

Here , 1IP~j j supfec IlPt fII IIf II, as usual . Consideration of this problem is mot iva ted  b~

the fact  that P t is a Projector on c( a ,b) and its ra nge is ir , the suhspare of

polynomi als of degree < n , which  i mpl i es that

- Il~ 
— < (1 + I! r

~?I ) d i s t ( f , r )

Sponsored by the Uni ted  Sta tes  Army under  Contract  No. DMG29-75-C-0024 and the Nat iona l
Science Foundation under Gi ant No. MCS75- 17395.
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It is well known th~t I P ~~jI can he computed as

. 

JIP
~JJ II A~ II ~

with

A t := 
i=O 

1

the Lobosque function of the process. A simple argument shows that A
~
(x) > 1 wi th

equa l i ty  i f f  x e  {t
0 

t } .  Set

A ( t )  : max A (x)  for  i e I l , n)
1 —- 

t <x < t

r In 1931, S. Be rnste in  (1)  con -jecturcd that  I1P~II is minimal when 
~~~~

i . e . ,  when A (L) = A (t) = ... A (t). Later , Erdos [7) added to this the conjeeture1 2 —  n —

• that  there is exactly one choice of t for whi h eq u i on c i l l a t e s  and that

(1) mm ).(t) < := I ;  ~r j j  fo r  c-very t C T

The I otter conji - lur e ~~~ c a r e  a) ready in  ! i c 3 ~~e [ C ]  i n  the form : “ml u (t) ac-hi eves its

maximum WIo ii •‘ equ i on illatcs .

• Subsequent work on the e c on j t u re s  and r~ la teil t r e i c ;  i c  e t i m m i r l y l in  L u t t r i : :i &

• R iv i  in [ I I ]  , i :cJ  in Chen cy  & h r i c ;c  14 1

Subetantial jr e;;res:; in 1 s w j  j u g  ( h : ~e c - c u  j t c i r s hoe C o re  o n l y  v i  y r ’ e i i~ I

Kilgore and Ch~ noy 19] showed the existence of t C T for which  A
~ 

cquioocil I i  r e .  ‘1 h

• r e s u l t  w : s  considerably strengthened by hiliio r 1~~1 who showed that an 
~ipUmal ~~

• f unc t ion ,  i .e ., a A
~ 

for which  I I A ~II A , mu r t  n ec e s sa r i l y  c q u i osc i l l a te .

in t h e  pre ;  i t  ~~~~ cc , which is ve ry much i c r -cl on K ii core ’s anal ye is , we prove t ic

• Va l i d i t y  of a l l  of the above ronjecturi u . Expi ic- i t ly ,  we pr~~-ve (Theorem I )  that thol e ii; only

one t C T for which  A
~ 

cq u i o sc i l l a i r c s , and we pmve (Theorem 2) that

A • (t )  A ( s)  for  al l  i C
1 -- •— 2 —

canno t hold t x c e p L  in thc t r i v i a l  case when t ci f rom w h i c h  (I) follows immediately. In

addition , we prove analoqoun results for tri gonoir~~t r ic interpolation.

• — 2 —  
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k
The article is organized as follows. In Section 2, we Outline Kilgore’s proof of

r the fact that an optimal Lebesgue function must equioscillate. Section 3 is concerrie~

with the proof of Theorems 1 and 2. In Section 4, we extend these results to the case of

• trigonometric interpolation. Explicitly, we prove the intuitively obvious fact  that

trigonometric interpolation on (O ,2s) at equidistant nodes is opt imal .

ti-
k

C ’

- -.9

—3—
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E ~ 2. K i ) q ~~re ’ s result. In this section , we q u i c k l y  review the proof of Kilgore ’s

rc sult  t h a t  an oj t i m o l  Lobesguo f u nc t i o n  must  equ io sc i l l a te . Th [s we do for completeness

and in  order to f ac i l i t at e  i t s  e x t e nsi o n  to t r igonomet r i c  in terpo la t ion  in Section 4 .  We

conti h ue to use t h e  n o t a t io n  int r o d uc ed  in Section 1

Th~oi~~rc ( K i l ; r e  [5)). If lA t h A ( in f T Ift~II ~~ ~~~~~~~~ 
~t eguiese i l l a t es ,

• i .e . ,  then A ( t)  A ( t)  . . . A Ct - )1 - -  2 —  n —

Proof o ut i l i r .  For i e (1 , u l ,  deno to by F . the polynomial  of degree < n which

• agrees w i t h  on (t . 1
, t ) .  One e a s i l y  v e r i f ie s  th a t  is the un i que element of

ii fo r wh i c h
n

for j C [O ,i-l]
F • ( t . )
i J — i

for  j e f i , n ]

Furthermore , d r - r o te by 1 - the uni joe point ii, It . ,L . at  wh ich  A and F take on
• 1 i 1  1 t I

the va lue  A . Ct )

• I’. U )  (t) = m i x  I I . Cx) I for all i e ( l , n ]
1 1 1~~~

• 1I <x~~t. .1— ] - - -

Ki 1gcr~ - po ints  out  t hat  th  t i - or e r  f c l  lows  at  orc e i f  it can he shown that

fo r  -~~.- l t C T , ( c ~ :Ii ~ f [l , n ] ,  and a l l  ii close to A ( t )  : ( A . ( t ) ) ~~, there
( 2 )  1

exists s c ‘I cl ose to t so that A . ( s )  = p .  for all i ~ k

For , t l rc o A
k

( t )  fl 1j1 for  some 
- 

Ic i m p li es  t he  ex i s t en ce of s (near t)  for which

II A l l  < IIA ~II
K ilgore c e t }l  ishes ( 2 )  1 v show i ng that

(3) for t C T , and k C I ) , n ) ,  3k 
: d e t (~ A . ( t )/ ~ t .) ~~~1~~~~ * 0

• i*k

Hi s  proo f of ( 3 )  l- cc j i i i s  with the observation that

= ( 1
1 

— tk
) (t

3 
— tk

)

k#j

which rh ro w - A . to be c c nt i i ru ou s ly  d i f f e r ~ n t i ab I e  on T and also shows that (3) is

e q u i va le n t  to

— 4—
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(4) for t i  T and k C Il ,n ) ,  det (g.(t .))~~ 1~~~~ 
* 0

with

q• (x) :~ F’(x)/(x — n ) ,  i e (l ,n)

Since each is a polynomial of degree < n — 2 , (4) is, in turn, equivalent to the

linear independence of any n - 1 of the n polynomials q
1
,. .. ,q. For the proof of

this linear independence, Kilgore uses eight lemmas. The first five lemmas lead up to -

the following

Lemma 6 (of (8)). On the interval It ,r 1, the zeros of F’,...,F’ lie in the
i n  1 n

pattern
C —

l,n,n—l ,..,3,2,l, n,m-— 1,..,3,2 ,l,n ,n—l ,..,3,2,l ,n, n—l ,..,3,2,l,n

Here , the nusiber i denotes a zero of F ., and i deno tes the point -r ..

It may be instructive for the reader to consider the following alternative argument

which obtains Lemma 6 as an immediate corollary to the corresponding result for the zeros

• of F ,...,F.
1

For r C [l ,n)\{i}, F . changes sign on (t
1
,t ), hence must have a zero there.

• Since F~ cannot have more than n zeros , these zeros must all be simple and F. has no

other zeros in (a ,b J . Let ~~~~~~~~~~~~~ denote these zeros , in increasing order . ‘then

((t , t ), for r < i
(i) J r l  r

6
r 

\•~
t ,t

1
), for r > i

~~ F’~ has an additional zero , we denote it by o~~ or by depending on whether

it is less than a or greater than b , respectively.

• Lénsna 1. For i < j ,  the zeros of F
1 

and F . strictly interlace. More precisely ,

< for all applicable r in (0 ,n ) .

Proof. The function G
1 

: F
~ 

— (—l)~~~ F~ satisfies

(0 for k (O ,i — 1) U (j , n)
G
l
(t
k
) k—i

(, 2 (—l) for k C (i ,j  — 1)

—5—
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Thu s , C
1 

has at leas t i + n 4 1 — j  zeros ou t s ide  (t . , t . 1 ’ and j — i — i zeros

in (t . , t
1
). Since is a polynomia l of degree ~ n , it cannot have any additional

zeros and al]  these zeros mus t  be s imple .  But , since G
1

(t .)  = 2 > 0, this shows that

(_]J 1 r G > 0 on (t , t ) for all r < I and so shows that1 r—1 r

(Sa) t < t for r e (l, i — I]r—l r r r

and also

(5b) ~~~ ( i )  
< t

0 
if these exist.

We have trivially
- 

(j )
t• < 0  < t •

- . 1—1 1 1
(Sc)  ( i )

t •  < 0  < t •j — l  j — 1 j

Also , G1
(t .1 ) = 2 (_1)

J_ l_ i
, hence (_l) r-iG > 0 on ( t , t~~~1

) for r > j, and therefore

(5d) tr < ~~~~~~ 0
( i )  

< for  r C (j , n — I ]

and also

• ( Se) ~ < < i f  these ex i s t .

F i n a l l y ,  the f u n c t i o n  G := F . + (— l )~ 
1F s a t i s f i e s

2 1 J

12(_]• ) k l l  for k e [O , i — 1]

G2(t k) 0 for k C (i ,j  — 1) ,

for k C [j,nl

G has at least the j - i zeros t . t . in F t . ,t .] and has at least i— l 4 n— j2 1 ]—
~~ 

1—1 3

zeros outside (ti
1
,t J ,  givi ng a total of at least n - I zeros. Since

G2 (t~~1
)G 2 (t3

) = 4(—1 )~~~
’, the number of zeros of G

2 
in (t

1
,t J  must be of parity

j - i. Therefore , since is of degree < n, it follows that G2 has no other zeros

in (t . 1 ,t .]. This proves that (_ l) n l
G
2 

> ~ ~~ for r C Ii ,j) and so

shows that

(Sf) tr_ 1 < < t
r 

for r C (i  + l ,j — I )

Concatenation of (5a—f) proves l emma 1.

-6—
~ - •~ 
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Figure 1. Schematic drawing of F . (solid), F . (dashed ) and -F . (dotted)
• 1 3 4_j

for ii 6, i = 3, j  = 5. The graphs of F. and (_ 1 ) J F . cross at the1 
~~~~

• 3
n points indicated by 0, those of F. and -(-1)’ 1F . cross at the
n - 1 points indicated by 0. 1

I’I~~ I ’
I’

\_j

Corol.~~~~~ The zeros of F
1
,... ,F on (-~ ,~~) lie in the pattern

~ (I) ~
(l) 0(n) ~

(l) (n) (1) (n) (J)
o ‘

~~~
•
~~~
‘ o ‘ i I..., i ~~~ ‘“ ‘0

n—l ’
0
n - ‘“

~~
‘0n

where I and .7 are certain integers with 1 < I < J < n.

Proof. The corollary is an immediate consequence of Lemma 1 and the additional fact

that and necessarily exist.0 n

Since is of degree n for any i and j ,  it follows that I equals 3 — 1

or .7 - 2.

Let now denote the zero of F ’ which l ies between ~ (x) and o~~~~ . Sincer r-l r

the zeros of Fj and F~ interlace for i * ~ v. A. Markov ’s well known result (12)

—7—
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implies that the zeros of F~ and F~ interlace , and interlace in the same manner.

therefore, the corollary implies

Lemma 2. The zeros of ~~~~~~~~ l ie in the pattern

( I )  ( 1) (n)  ( 1) (n)  (3)
I , . . . , I , T , . . ., I , T , . . . ,r1 1 2 n-l n n

whore I and 3 are certain integers with 1 ~ I < 3  < n .

Lemma 6 of (8] fol lows from this since = n ., all i.

The proof of (4)  i s  now f in i shed  as follows . Recall that  q. is a polynomial  of

degree < n - 2 whIch vanishes at the zeros of F~ except for r~~. We m a y  assume

q . ( t 1
) > 0 , all i. Lemma 6 then implies that

sgn q
1
(T.) = (_1) J+1 for i , j  C [2 ,n J ,  i * j

sgrm q ( r . )  = (—1) for 1 C [2 ,n)

- sgn q1
(t .)  = ( — l ) ~ for j C [2 ,n ]

Assume now t hat  = 0 for some a # 0 with a
~ ~ 

0. Then the set

N := (k C (2 ,nl : a
k 

< 0)  is not empty since ~~~(T
1

) > 0 for all  k .  Set P ;= (2,n]\N

and consid.~r the function

f : a1q
1 

+ 
k E N k k  

= 

k E P 
~~~~ .

We have

( — l ) 3f ( T .)  = ~ a~~(_ 1) 3~~ q~~(I .) > 0 for j V P
kCP

while

(—l ) 3f(i.) = a
1
(—1) 3q1

(T.) + 
~ 

C— ak) 
(_ l))+lq~ (r . )  > 0 for 3 C P

keN

This shows the polynomial f of degree < n - 2 to have n — 1 weak sign changes, and

therefore f = 0 and so, in particular , P •. Hence a
k 

< 0 for all k C 12,n). But

si nce q~ (r
1
) > 0 for all k, it then also follows that a

1 
> 0.

In summar y, ~~~~~~ 0 for some a # 0 implies that a
l
a
k 

< 0 for all k C 12 ,n)

In particular , then a
k 
* 0 for all k C Il ,n ) ,  and (4)  follows .

_  ---~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• 3. Oniclueness. The central result of this article is the following theorem.

Theorem 1. The map r T ~ ~~n 1 
: t~~ ~ r

1~ 1
(t)  - A . (t))~~~ is a homeomorphism of

T onto ~

In particular , there is exactly one t e  T with F(t) = 0, i.e., exactly one t

for which A~ equloscillates. Since Kilgore proved that r maps every optimal t to

• the point 0 e Rn i , Theorem 1 impl ies at once the validity of Bernstein ’s conjecture .

Corollary.  
~~ 

equioscillates , then ll~ j l < Il1’~lI for all s * t.

We shall use the following two lemmas in the proof of Theorem 1.

Lemma 3. The map I’ is a local homeomorphism.

Proof . It s u f f i c e s  to show tha t
a

for all t E  T, de t (~~(A . ÷1 
— A .) (t ) / ~ t .)? ’ 1 * 0

r Expanding this determinant by rows , one-obtains

det(a (A - A )/3t ) ~
~+l i. k=l k

where we use again the abbreviation

k C f l ,n]

i*k

Hence , it suffices to show that

(6) for some C C {—l,l} and all t e T, k C tl,nl, C (_1)kJk
(~) ~ 0

But , since 3
k 

is a continuous function of t and never vanishes on T by Kilgore ’s

result, and T is connected , (6) is proven once we show that, for some t C T ,

(7) (_l)kJk
(~)/3lQ) 

< 0 for k C (2,nJ

This we could prov~ by observing that the last part of the argument for Kilgore’s Theorem

as we gave It in the preceding section gives precise information about the signs of the

(n — 1)-minors of the matrix (q.(t .)) which is easily translated into the required

information about the sign of 3k’31’ all k. But the following argument is more direct

and establishes that

I
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~~i”~~k 
0 for k C (2 , n]

a fact  which we need again l a te r .

To prove (7) for some t, observe that , since 3
1

(t )  * 0 , we can f i n d  a cont inuously  
. -

d i f f e rent iable  f u n c t i o n  G on some open nei ghborhood V of the point ( A . ( t ) ) ~ and an

ope n neighborhood U of t so t hat

• A (s) = G ( A  ( s)  A ( s ) )  for all  S C V1 —  2 —  n —  —

Also , by Cramer ’s rule ,

ax 1 = 

k~2 
(_ 1) k (J k/J l ) l x k

and therefore

• 
aG/ax k = aY~~k ( T l) kj

k /3l fo r k

If now , for som e k e 12 ,n ] ,  (_ l ) k Jk /J l > 0, then we could f ind  s e U such that

A . C s)  = A , ( t )  for i C !2, n )\ ( k )
1

while

A - (s)  < A - (t) for both i 1 and I = k
1

hence , for an optimal t , a would also be opt imal , ye t  A would not equlosc il late ,

contradicting Kilgore ’s result. This proves (7) for an optimal t and so proves (8)

and Lemma 3.

Lemma 4. The map r take s ~T i n to ~1~
n l  

~~ pli c i t l y ,  if t~~ s c  T with

As . 0 for some i C (0 , n — 11, then IIr (~) iI ~
Proof. Since EAs . b — a ~ 0, there exists i such that As . = 0 wh i le either

3 1

As . or As . is not zero. Assume without loss that As . = 0 and As , * 0. Nowi— l  1+1 1

pick t := (L 1 
+ t . ) / 2  and let x be an a rbit r ary  point in (t ., t . 1 ) .  The n

( (t — t 1) / ( t .~~1 
— t

1
) for r < i — 1

> At
~

-_ 1/At 1 for r = ~~~ + 1 ,

1 for r > j + l .

—10-



Therefore, for all j  C (0,nJ ,

t .( t )  t — t At . t —
_____ 

r—r r 1 1 1  r-r 
______

L.(x) 
= 

x — t 2 A t .  t . -RT ‘

3 r*3 r 1 r<1 1+1 1 l

as At . -‘ 0 and At . -
~ As . * 0. This shows that

• 1 1 1  i—l

lim A (t)/A Cx) = for every x C (t , t .t t 1 i+ l— —

• Therefore u r n  x . ( t ) / A . Ct )  = , and so u r n  (A . — A .)  (t ) = — since A . > l .
1 — 1+1 — 

~~~~ 
i+l 1 —. i+l —

This proves that lim
~+ Il r ( t fl = = and so proves the lemma .

Theorem 1 is an immediate consequence of Lemmas 3 and 4 and of the following

Theorem (see, e.g., 121 , 110]). A local homeomorphism f of )Rm 
to Em wi th

lixn~ x II-~~~~~~ 
is a homeomorphism of E

m 
~~~~ E

m

In a certain sense, this theorem is tr ivial  since it is a Special case of we l l  known

facts regarding covering maps : The func t ion  f is a covering map fo r  E
m 

and so,

since Em is connected and simply connected , f is a universal covering map, therefore

equivalent to any other universal covering map for Em in p a r t i c u l a r, f is e q u i v a l e n t

to the ident i ty  on Em (see , e . g . ,  [13; pp. 80-81] ) .  But ,  for  completeness, we now

give an outline of a direct proof for the theorem.

The range of f is open , since f is locally 1 — 1 hence an open map. The range

of f is also closed since lint f(X
r
) = a implies that the sequence ( f ( x ) )  is

bounded , therefore, since f “maps to = “ by assumption , (x ) is bounded ,

hence can be assumed to converge to some x for which then f ( x )  = a. This shows that

the range of f is Em

To show that f is 1 - 1, assume that f(x) = f ( y )  for some x ,y C Ent . The

function h I X -~ ( s ,t)  ‘~ (1 — t)h
0
(s) + tf(x) with h

0 
: I -+ ]Rnt : s ~ f(sx + (1—s)y)

and I := (0,11 is then a continuous map for which h(z) f(x) for all z in the set

B ((0 )  X I) U (I x (u } )  U (( 1)  X I )

But now , the assumptions on f allow one to “lift ” the map h, i.e., to show the existence

of a continuous map g : I x I -~ E” so that f~~g = h and g ( 0 , 0) y ,  therefore

—1 1—

I

~

- - - -

~
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iv. .

g(s,0) = sx + (1 — s)y for all s C I. This impl ies  that  both x and y belong to

the connected set g (B) on wh icli i is Constantly equal to [Cx) • and the fact that

f i s l~ c.j11y 1 — 1 now implies that x y.

This proves the theorem , except for the technical part of “lifting ” h. But this

can t - I- I :-ve d , e. —j ..as is le0-ia 3 of (1 ~ ; p. 711 aft .-r one lia~ prev -d . a~ in the proof

of Th~ -r~ n 2 below , that curv~-e can be lifted uni~ u--1 y.

Ac-knos-1e~ q~~ient. We art• grateful to N. G .  C r a n d a l l  for  pointing Out to us the above

theorem atid for joil ing us in thu constr ict icn of a p roef.

We now prove Erdos ’ conjecture that , for every t C  T,

-~ . A C (mm . 1 - ( t )  , max. .~ - ( t )  I
• ~ 1 - -  1 1 —

Theorem 2. If A . (a) < 1 (t )  fo r  i = 1 n , then s = t .
— 1 — — - —

Proof. If A . Cs) = A ( t )  for all 1, then s = t by Theotum 1. Hence assume tha t
1~~~ 1 —  — —

A (s) < A (t) for some k. This leads to a contradiction as follows .

• 
. The map f:’r -~ r I~ ~ ( r )  : - - (A . (r))~ is a local hemc-omorphi~ n- i~i nce

det f’ (r) = J
1
(r) ~ 0 for all r C T. We can the re fo re  “ l i f t ” any con t inuous  curve

h:(0,l1 -
~ to a curve in T as lone as 

~l 
stays bouccied “along ’ h. Speci fically, let

h :[O ,l1 -
~ 

~ n ]  
:~~ ~~ (1 — a)~~~~~) + ol (t)

Since f is locally 1 — 1, there exists , for each a C 10 ,11 , at most one continuous

function g :[O ,aj -
~ T so that g (O) = s and f.g h on [0,a). let A be the

set of such a. Then A is not empty since it contains 0. Further , A is open since ,

for every S C  (0,1), some neighborhood V of 9 (0) is mapped 1 - 1 onto a ball

around h ( s)  by f, hence g can be extended continuously to the interval

—1
(0,aJ U h e f ( V )  W ) i C h  cOntainS —~ in its inLet-icr . Finally, A is closed . To see

- • this, it is sufficicnt to prove that [0,~~) C A implies & c A , which can be done as

follows. Since 1C’ ,~~) C A , g:[0,-,) • T:~ ~ g (a) defines a continuous map with g(0) = S

and f o q  = h on [O ,&). We claim tha t g Ci) e o f lv c r q e o  to sornc - point in T as a -. a.

Indeed , for i C (2 ,n), A .(g(~ )) in (-r - - ,c”s toward i .(a)  = (1 — &)A . (s) + &A~~(t) as

a ~ &, therefore , by (8) in the proof of Lemma 3, 1
1
(g(t)) decreases monotonely as

—12— 
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a -, 
~~~, hence must have a limit since it is bounded below (by 1, for instance). This -

shows that lim~~~r(g (a)) exists in E~~
1
, hence g(a) converges to some point r e  T,

by Theorem 1. But then , the definition q(a) := r provides a cOntinuous extension of g

to 10,&) with fg(&) = h(&), hence & C A.

f This shows that A = [0 , 1 1 ,  hence there exists g:[0,1] -* P continuous so that

g(0) = s and f o g  = h . Therefore, with r : g(l), we have A . ( r ) = A .(t) for all

~ e (2 ,nJ , while A
1
(r) < A

t
(s) A

1
(t). But, since A

k
(s) < A~~(t) for some k, it

follows that actually

1k A
1
(r) < A

1
(t)

either because k 1, or else because A
k 

strictly increases along the curve g, there—

fore A
1 must s t r ic t ly  decrease along that  curve , by (8) in the proof of Lemma 3.

Consider now the curve

n-l it
h:I 0,) -‘- iR :5  ‘~ (A Ct ) —

By the preceding argument , there exists & > 0 and a continuous function g:[0,&) T so

that f o g(a) = (A . (r) — a)~~ for all a < & ,  while A
1
(g(~ )) strictly increases from

A
1
(r) at a = 0 to ~ at a = &. This implies that

(A
1 — A )  (g(”)) = (A — A )  (r) = (A . 1 

— A .) (t) for all i e (2,n — 1]

while (A
2 

— A
1
)(g(a)) A

2
(t) — a — A

1
(g(a)) decreases front its value (A

2
(t) — A

1
(r))

at a 0 to — . But since A C  < A
1
(t), there exists therefore a so that

(A
2 

— A
1
)(g(a)) = (A

2 
— A

1
)(t). But then r(t) = F(g(a)) while g(ci) * t since , e.g.,

• A
2
(g(a)) < A~~(t). This contradiction to Theorem 1 finishes the proof of Theorem 2.

Corol)ary. For all k C [l,nl , the map r k ZT -
~ ]R~~

1: r ~ (A . (r))~~~ is (globally)

• one-one.

Proof. If r (r) r (s) , then either A . (r) < A . Cs) for all i or else
k —  k—  1~~~~ 

—

A (r) > A (s) for all I, hence r = S by Theorem 2.

We note that Theorem 2 provides another proof of the characterization of the optimal

node vector t as the unique point in T for which A
~ - 

equioscillates. Theorem 2

—1 3— 
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also shows that the optimal node vector is of no practical importance. For Brutman (3)

has recently shown that, wi th

(9) t~ = (a + b + (a — b) (co s 
~~~~~~~~~~~~ 

ul/cos 
2n + 2 ) / ’2 , ~ C (0 ,0)

the zeros of the Chebyshev polynomial of degree n + 1, adjusted to the interval (a,b)

in such a way that the first and the last zero fall on the end points of the interval,

max A. ) - mm A. It) < .5 .
1. —

Numerical evidence strongly indicates that even

max A . (t) — ntin A . (t )  < .19251~~~ . 1~~~1 1.

which would mean that the easily constructed node vector (9) produces an interpolation

operator P
t whose norm is within .2 of the best possible value for all n.

I,.

1.

F -14- 
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4. Trigonometric interpolation. In this section , we carry over the analysis of

Sections 2 and 3 to the case of interpolation by trigonometric polynomials, i.e., by

elements of

• ‘
~
‘
n 

:= span {l, cos x , sin x . . ., cos nx,  sin ax)

on (0,2w). Because of the periodicity, the problem is altered slightly. Corresponding

to each point t i-n -

T : {t C : 0 < t < t 2 < ... t2 <

we construct the linear map P
t 

of trigonometric interpolation in C(0,2w ) at the

~~~ . :~ 
2n + 1 points 0 to < < t2n < 2i~. In its Lagrange form,

P f =  ~ f(t.)L.t . 1 1
—

with

2n S(~~— t j
9..(x) : T 1 

~~ 
, all i € [0 , 2n ]

Here , we use the abbreviation

5(x) := sin(x/2)

We have again 
~~ 

= where A
t I~k.I. Set

A. (t) := max A Cx) , for all i C (l,2n + 1] ,1 
ti 1 i

with t := 2w.
2n+l

* * 2nTheorem 3. We have !lP
~~

jI = A : inf 
C T  I I 1~S II exactlj~~ihen t = t :

in which case A
~ 

eguioscillates. Furthermore, for any t C T\[t },

m m  A . (t) ‘~ A < max A . (t)
1 .1 1

Proof. We begin with a proof of the claim that

(10) ~~~~~~~~~~~~~~~~~~~~~~ * 0 for all t C T , k C (1,2n + 1)

i*k

Let F~ be the unique trigonometric polynomial of degree n which agrees with A
~ 

on

— i s—
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• (t . ,t .), for i f  (l.2n + 1).  Thus ,
i—l i

(—1) ’ ~ for j  C I0 ,i — 1)
— . F.(t .) =

1 3
• (—l)~ 

‘ for j  E [i ,2n + 3 )

Let T . denote the unique point in [t . ,t.) at which A , and hence F ., takes on
1 t 1

the value A . Ct) . Now

2n F~ (t.) 2n

- 
I 

IA /It . = —F ~~~( t )l . ( T . )  = S ( t . — t
k
) 
S(t ~ /~;i~,

- S(t . — t
k

)

which shows tha t  A . is a continuously differentiable function on T and a lso  shows

that (1 0)  is equivalent to

( 1 1 )  det(q. (L .)) 
n+l 2n � 0 fo r al l  t f T, k C [1,2n + 1)

1 j  1 l ;J ) — —-

i’/k

where

q. Cx) F~ (x)/S (x - ~~~. ) ,  i C [3 , 2n + 1)
1 1 1

For the proof of (11) , we make use of the following result corresponding to Lemma 6

of (s). Penote by ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ the zeros of F~ in [0 , 2~t ) ,  necessarily al l  simple,

in order.

Lemmu 5. The zeros of F~~ ....F 1 
lie in~~~~~j~a~ tern

0 < ~~~~~~ < < 
(1) 

< 
(2n+1) (1) (2n+l) (i+1) 

2w
— 2n 2n 2n 1 2n-l 2n 2n

for a certain i C [l , 2 n ) .  Note that  = t
1

, a nd = fo r k C [2 ,2n + 11.

The proof of Lemma 5 follows exactly the same lines as the one given in Section 2

for Lemma 6 of [8) (including the use of the trigonometric analog of V. A. Markov ’s resul t)

except that matters are a little easier since both F. and F~ have exactly 2n zeros

in [0,2w), for all i.

In order to use Lortuna 5 in a proof of (11) much as Kilgore used Lemma £ of [8) in

his proof of (4), we must first show that

2n+l

- ~
• 0 5

2n 
< 2w and 

~ 
a .q. (s.) = 0 for all j  C (0,2n)

(12) 2n+1 -

impl ies  that ~ a g .  0

3 i=l

—1 6— 

- - - - .-- - ~~~~~~~~ - - --•- .-~~~ 



- -

2n
For this, observe that F’(x) = const FT S(x - 1W )~ therefore

k=l k

2n
q.(x) = const 1f  S(x — ~~~1)

) fo r all i ~ (],2n + 1)
k=1
k*i—1

Here , k * i - 1 is meant to read k * 2n in case i = 1. This shows that q. is not

2w—period ic, but 4w—periodic, and odd about 2w, i.e., q. (x + 2w) = —q (x), all x.

Furthermore, the function p.(x) := q.(2x) , all x , is in

= span{l , cos x, sin x,... ,cos (2n — l)x, sin(2n — 1)x) .

Therefore , the hypotheses of (12) imply that the element Z a p ,  of lr
2nl 

vanishes at

the 4n distinct points &
l~~ 

•,s4 
with

(s./2 for 5 C [l,2n]
S . : (  ~) + w for 5 C 12n + l , 4n 1  ,

and so Z.a .p. = 0 , proving (12).

The proof of (11) proceeds now as the proof of (4) in Section 2, and , with (10) thus

established, the reasoning in the proofs of Theorems 1 and 2 in Section 3 applies directly

to finish the proof of Theorem 3.

*We note in passing that Ehlich & Zeller [5) have proved a formula for A in the

trigonometric case,

(13) A
* 

+ 2 

~~~ 
~~ : l)~~)1) + 1)

Finally, the above analysis applies without essential change to the case when we

also fix t
2 

at some point b < 2w and consider the optimal choice of t
1 

< . . .  < t
2~_1

in (0,b) for trigonometric interpolation.

5. Postscript. After completion of this work in March , we received word from

Theodore Kilgore that he had succeeded in proving Bernstein ’s conjecture. His proof

proceeds along different lines.

~~~~ 
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prove the following conjectures.

(a) Bernstein: IA is minimal when A (t) = = A (t) ... ~ :~~~
= 

* 
1—  n —

(b) Erdos: If A . (t) = \ , j = 1 ,... ,n, then for all s € T\{t} ,

mm ~- . (s) < A < max A . (s) .
r . 1 .

1 1

Analogous results are proven for trigonometric interpolation.

These results are of interest since II A ~II gives the norm of the linear

map of polynomial interpolation on the continuous functions and therefore

bou nds the e f fec t  of noisy da ta on the ir polynomial in terpolan t and shows how

close the interpolation error is to the best possible error by any method .
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